Category Archives: Maps

Planispheres (Star Maps): Paper or Electronic?

Published May 29, 2014
Last Updated April 18, 2016

A topic that comes up a lot is discussion about what makes a good astronomy helper application. Whenever we suggest purchasing a paper Planisphere our critics remind us that they are not necessary because “there is a great app” to do that.


We take exception to the “there is an app for that” assertion… but perhaps not for the obvious reason. In fact we DO use several apps for forecasting and navigating the night sky. But ultimately we find the good old fashioned planisphere to be the most effective for most of what we want to do. We’ll make the case for a paper (or plastic) planisphere in a moment.

Why Do We Want Something Besides our Eyes?

Let’s start with determining why we want something to help us with our night sky navigation. Some scenarios to consider include:

  1. We are a beginner and we really don’t know Canis Major from Major Appliances.
  2. We have some familiarity with some of the constellations, but we want to learn more.
  3. We want to take a shot with a particular sky object behind a particular landmark.
  4. Even though we know the night sky pretty well, we still need to be able to find faint objects, or find objects in less than dark skies – the Milky Way, for example is difficult to see unless conditions are good and the sky is dark.
  5. We are going to go to an unfamiliar place with a latitude that is very different from where we normally gaze at the night sky.
  6. We want to know where to look to observe a particular phenomenon like the Geminid Meteor shower.

Can’t I Do that with an App?

It might seem that and android, iPad or iPhone app is the best tool since you can take it with you.  And that MIGHT be right except for the following significant problems:

  1. Unless you keep the app brightness really low or use it in a “dark sky mode” (usually dim red), you’ll damage your night vision making it difficult or impossible to see dimmer objects in the night sky.
  2. If you’re trying to find the Milky Way (the dense part in Sagittarius) but you try to use the app during a period when the Milky Way is not visible. No matter what time of night you enter, you won’t see the Milky Way (e.g. November through January).
  3. The representation on the app is often NOTHING like what it may look to your eye in your location. Every app suffers from this problem in one way or another. Some apps make the Milky Way in Canis Major appear to be incredulous – actually its very sedate there.
  4. You want an idea when it will be BEST to get the Milky Way aligned over your target. But on an App you will need to determine the time manually.
  5. If you mistakenly trust the app to tell you where it’s pointing you may be surprised how wrong it can be. Due to iPhone, Android, and iPad hardware limitations, a handheld app could be anywhere from close enough to off by 180 degrees!  It will be even worse if for some reason your App is configured for the wrong timezone, or the wrong GPS location.
    True story 1: I happened on a family in Yosemite, California and the dad had out his iPad pointing out to his children: “see … there is Orion”.. and over there…” but he was from Alabama and his iPad was off by 3 hours – and his compass wasn’t calibrated either so he ended up almost 180 degrees off.
  6. Dead battery. If you have to choose between enough battery to make an emergency call or figuring out your night sky… well, we recommend saving the battery.
  7. Most apps show only a fractional portion of the sky which may confuse anyone who is not already familiar with the sky.

While we freely admit that we like and use the following applications, we prefer a paper/plastic Planisphere.

  • Stellarium – FREE runs on Mac, PC and Linux.  We like it because it has excellent sky condition simulations that help give a realistic view of the night sky.  It won’t show you dim stars under bright moonlight unless you ask it to. It can also track comets and satellites. What we don’t like is that it is fidgety to configure.
  • StarMap by Fredd software for the iPhone/iPad. We like this one because it’s quite complete. It is well organized to show you, for example, what meteor showers are visible, what “dimmer” objects you can find, and has a simple interface for adjusting the sky brightness or the time of day. What we don’t like: we like to call the constellations by their scientific (and we believe) more common names.  Herdsman?  That’s Bootes. Big Dog? That’s Canis Major, thank you.  Note there are TWO versions of this App, unless you’re a serious astronomer, the less expensive one will work.
  • GoSkyWatch – admittedly we like it because we got it as a free app through Starbucks app of the week but we think its worth the price anyway! We like that it’s pretty versatile, when you point it at the sky it gives the altitude and azimuth (elevation angle and compass direction) which can come in quite handy – even though as we’ve already noted the compass direction is probably wrong! Zero in on an object and it will give you and idea what it looks like. We like that it’s Milky Way representation – while overly bright is pretty close to what it looks like. You won’t confuse Canis Major with Sagittarius, for example. It also includes a great assortment of dim objects and shows constellations with “good names” not just the “common name”. It also has a night mode to conserve your night vision.  It doesn’t have meteor showers or satellites, however.

What We Don’t Like

We’re not fond of anything we haven’t listed. Not that there aren’t better apps, but every one we’ve tried falls short in some way. Take for example, SkySafari.

SkySafari for example, is mostly a disappointment. Not only are there 12 different versions for iOS that range in price from $1 to $40, but the app doesn’t do a good job simulating the night sky, prefers to show useless images of the mythological constellations (which fortunately can be turned off) and shows a garish orange Milky Way which might be exciting to look at except that it will never look like what the app reveals.  SkySafari also doesn’t adjust for the effects of twilight or moonlight.

SkySafari does have some nice information about each object in its database, but the database is not searchable.  If you’re interested, for example in M101 you’ll have to scroll all the way to the bottom of the Messier Catalog page.  If you want to catch a glimpse of the ISS (Zarya/Space Station) you’ll have to slog through the Satellites page.

Why We Like the Planisphere

In this day and age it’s pretty normal for people to navigate by GPS, not by map or even by written instructions. It’s convenient to rely on devices. But we have driven to places and had NO idea how we got there except that “Mr. Carson” – our pet name for our British Accented “voice” – told us where to turn. In other words, we accomplished the goal of getting somewhere, but not really learning the geography, or even getting a good sense of direction. And we trust our GPS at a potential cost: the instructions could be WRONG, or dangerous, and our device might die. True story 2: we accidentally wiped our handheld GPS track when our goal was to return through a heavily fogged in trail at night – depriving us of the very bit of information that we needed!  We lived, obviously, but took several wrong turns as a result.

First we like the Planisphere because it is indeed a Map.

You can study the Planisphere day or night and observe what constellations are near other constellations.  A planisphere is in fact a rotating map. Unlike directions to grandma’s house, the appearance of the night sky changes minute by minute and season by season because of the earth’s rotation and the earths path around the sun.  While you know you can always turn left to get to grandma’s house, what you want to find in the night sky may in fact be “upside down” from what you remember 3 months or six hours ago.

From a larger map like a Planisphere you’ll discover that lining up Rigel to Betelgeuse (in Orion) and keeping straight will get you to Castor and Pollux in Gemini.  Following Orion’s “belt stars” toward the Rigel side will get you to Taurus and from there if you keeping going you’ll find the Pleiades… and so on. You’ll learn that you can navigate to the stars WITH the stars.

A Planisphere is also a Chart of Dates

A Planisphere also has a very powerful do-it-once approach to aligning things in the night sky. Spin the wheel to the sky configuration you wish and you can read around the edges every time of night over about 5 months in which the sky will appear in the same configuration!  No app we’ve seen does that!  In fact, we use the Planisphere to decide when the Milky Way will appear over our favorite waterfall or when Andromeda will be high in the night sky so we can snap it’s picture with the minimum amount of atmospheric distortion. The planisphere doesn’t tell us about the moon, but it does give us all the dates we have to work with.

Planispheres are Hard to Misconfigure

An app must have the correct location and timezone – which you may have noticed in True Story 1 can easily be quite wrong, a Planisphere is based on your local time. The only parameter you have to get right is to match your latitude with the proper Planisphere chart. If you live in San Francisco, you’ll want a chart that is valid from 30-40 degrees, not one that is 40-50 degrees and thus more suitable to Seattle residents. The most often made mistake on a Planisphere is to not subtract an hour from the time shown on the chart during daylight savings time. Some charts have the daylight savings time equivalent printed on them, but if not, just remember that during the summer if the watch reads 9 PM, you dial the chart to 8 PM.  The universe does not suddenly lurch 15 degrees when we decide to artificially set the time ahead an hour!

The one unfortunate thing about planispheres is that not all are created equal. We prefer DH Chandler’s LARGE charts because they are double sided and have less distortion than the single-sided charts. While it might be counter-intuitive to create a chart of black dots on a white background to represent the stars, it’s actually easier to read at night with a red flashlight than a chart with white stars on a black background.  You can get DH Chandler’s charts from Amazon for about $13 and from many other retailers.  If you join us for any of our events, we always have a supply on hand for our students.

Guardian of Forever

Plan C: How To Plan a Time Sequence Shot

If you missed the last total lunar eclipse, don’t worry. You’ll have another chance in October, 2014. For that, I’m grateful since as you can see I had some problems with my apparatus (the CamRanger). The battery failed after the 7th shot of the moon you see below, and then it stopped working again after 3 more shots, and needed to be slayed and restarted just as the moon was transitioning to fully eclipsed.

But this column is not about our troubles, it is about how I planned for the lunar eclipse shot you see below.

Plan C: San Jose City Hall Eclipse Sequence


The planning began with a list of possible foreground subjects. The San Jose City Hall Rotunda was “Plan C” and the least well researched of my plans. What were plan A and B? Those were one of my favorite lighthouses and a favorite landmark in San Francisco, California. For each arrangement I had to:

  1. Calculate where to stand to make sure the moon would be in an interesting phase above the object. The plan required solving these problems
    1. Determine how high in the sky the moon would be (to know what viewing angle was best)
    2. Determine which DIRECTION I needed to face to capture the moon.
    3. Determine how “wide” a lens I needed to get the sequence I wanted.
  2. Monitor the weather at each location.

After planning all that was left was to make a last-minute decision where the most likely target would have favorable conditions and make any final on-site adjustments.  I had a Plan D, too… but it was also in San Jose so it would have only been chosen had I found some serious obstacle at the City Hall rotunda.

San Jose City Hall Panorama

Calculating the Angles

Determining the angles needed is pretty simple. I used The Photographer’s Ephemeris including all the nifty tricks we teach in our Catching the Moon Webinar. Below you can see a screen shot from the Photographer’s Ephemeris which shows the moon altitude and direction at the beginning of the eclipse. I also moved the time ahead to show the same for the middle of the eclipse.  The moon’s altitude angle (32 to 41 degrees) gave me an idea how close to be to the rotunda to get the moon overhead.  Lower angles allow me to get farther away which allows me to photograph the moon larger relative to the foreground object. This eclipse, however, and the one in October will have the moon high overhead.

Coming up with a Foreground

There is no good substitute for knowing what interesting foregrounds are possible. And also knowing which direction(s) you should be facing.  I knew that the San Jose City Hall Rotunda was generally easterly because I had watched a sun rise through it. I also knew that the eclipse would be at maximum when the moon was in the southern sky so I knew that the range was SE to S directionally.  You can see a diagram from The Photographer’s Ephemeris below for more complete planning.

Calculating Where to Stand

I had to know approximately how tall the foreground object is. For the San Jose City Hall I flat-out guessed.  I found the overall height of the building through Google, and I guess the Rotunda was 60 to 80 feet tall.   My original calculations had me much closer to the building… it was only when I got on site that I realized that there were adaptations that needed to be made.

Watching the Weather

Remember that the Rotunda was plan C.  I kept a close eye on the weather for each of the planned sites.  My favorite weather app is provided by – in particular the hourly graphs. We talked about this tool in detail in a prior column.  Why do I like it so much? Because it gives me numbers instead of “partly cloudy”.  It was pretty obvious that the coastal region for Plan A, and the San Francisco Landmark (plan B) were likely to have bad weather – both fog and clouds. Indeed my friends who headed those directions were frustrated by poor visibility.  We had clouds passing through San Jose, but as the weather predictions had read: it got clearest right near totality, and overall was not a hindrance.

Last Minute Adaptation

When I first got to the site, I realized that the Rotunda was taller than I thought. I set up across the street in order to be able to have the moon over the Rotunda… but there were other problems, too. One of the problems is the floodlight on the top of the building. Another was a street light just to the right of where the red marker is in the graph below. These are problems that would only reveal themselves if you visit at night!

And then there are all of those flag posts.  My original guess at the Rotunda Height would have allowed me to stand between the fountain (brown area) and the building… but that clearly didn’t work as the rotunda was too high.  Setting up across the street (and very low) also had its challenges… namely buses and cars that came regularly.  I also realized that I had miscalculated the eclipse time by an hour (forgot it was now daylight savings time).  The miscalculation turned out to be a good thing as it left plenty of time to move around.  It would seem the ideal spot was in the MIDDLE of Santa Clara Street, but that wouldn’t have worked, of course.  Eventually I picked the spot with the red marker as a compromise between altitude of the moon above the structure, removing the glare from the tower lights, the wash-out of the street light, and the many flag poles in the way.

Planning Moonrise

If only my CamRanger had cooperated, I’d have had a continuous sequence of shots of the moon passing over the Rotunda.  There is always October… and maybe Plan A will work for that!

Of course that’s not ALL that was required to get the shot. I also had to composite each of the moon shots into their proper locations. I did that by first taking a panorama of the area, then making sure that when the exposures began I had a piece of the rotunda in each shot so I could properly align the moon over its actual location.  The creation of the image used the Easy HDR method we have previously described.

The Ideal Handheld App For Catching the Sun, Moon and Stars

Here at StarCircleAcademy we’ve been consuming and testing quite a number of photography related apps. So far none have risen to the promise that a handheld app could bring to the table.  Rather than illuminate what is missing from each app, here I describe what I want to DO with my handheld App.

In the Evening [5_057775+92]

  1. First, I need an app with accuracy to within 0.2 degrees! Why? Because the moon and sun are only 0.5 degrees in angular diameter. If I want to catch the moon exactly behind the Pigeon Point Lighthouse less accuracy will result in a “miss”.
    Monumental [C_038216]
  2. I want the app to accurately measure and save all the relevant data so I can reuse it and share it.  At minimum it needs to keep track of: From location, to location, altitude at the to location (degrees above horizontal), and any additional constraints like the fractional number of degrees that each measurement can vary. In some locations like the shore of a lake there is more leeway to move. In other spots, like the balcony of a building there is little leeway to move.  An ideal app would allow me to stand in two or more different spots to define that leeway.Rise and Shine [C_037951+77]If I’m solving for the moon, I’d like it to also remember the moon phase I’m interested in (usually full or slender crescent). The ability to take notes including things like height of the landmark is a big plus.
  3. Ideally I can save an image representing what I want with ALL data on the image so that if all I have is a photo, I can reconstruct the parameters in other tools or other ways.
    For example, SpyGlass shows me my GPS coordinates, the elevation, altitude and azimuth (compass direction) – though as you can see it’s calculation on where to find the moon is off by about 15 degrees (30 moon diameters) due to iPhone 4 compass inaccuracy.

    SpyGlass copy

    SpyGlass snap. Note that the plotted location of the moon is off due to iPhone compass hardware.

  4. I’d like to be able to pull up my saved locations and re-execute a search to find the next occurrence. For example, a Pigeon Point Lighthouse vista that I really like only occurs a few times a year. It’s not enough to keep track of the one event I photographed or plan to photograph.
    Project Impact [5_057573-615br]
  5. Bonus points if the data is stored in a server somewhere to make it easy to share. Extra bonus points if there is a way to have the server periodically check possible alignments and send me alerts or emails when such alignments are soon to become possible.
  6. For planning shots with the Milky Way or other prominent sky features (like the Andromeda Galaxy and the Great Orion Nebula), the app needs to accurately plot the course of those objects on an Augmented Reality frame. Images of the Milky Way presented must be realistic.  A poorly illustrated Milky Way won’t help me find the galactic center (which is what I most often want) or compare the alignment I want with the foreground I am trying to capture.
    Inflow [C_072091]
  7. For night related photography, the app must also factor in twilight and moonlight. That is, I want to be able point my device at say the Transamerica building and ask the app when (or if) the Andromeda Galaxy will appear above it when there is little or no moonlight.
  8. Make it easy to use, of course.  Most of the apps that embed maps in them are difficult to use on the tiny real estate of an iPhone – and require data connections as well.

Is it unrealistic to think a handheld app could meet these requirements?  I don’t think so. The biggest problem is overcoming the accuracy limitations in the current devices. The iPhone and iPad, for example have quite inaccurate compass readings except in perfect scenarios… but there are some clever ways (I think) to correct for that inaccuracy.  The tilt angle calculations from the on-board accelerometers and gyroscopes seem to be pretty accurate.

What We’ve Tried

  • Inclinometer. Great for measuring angles above the horizon. Even has a voice mode where it says aloud the measurement. Doesn’t do Now includes augmented reality mode so you don’t have to sight along an edge of the device. On an iPad, it seemed to be accurate to about 0.2 degrees!
  • GoSkyMap. Fun interactive sky map. You can change the date / and time and point it “at space” and it will show you great details about what is there. BUT you have to make sure you set the location correctly. Doesn’t have an Augmented Reality mode so you can’t tell how the mountain in the foreground interacts with the Milky Way, for example, but you can ask it where to find constellations and it will indicate which direction you should look.
  • Sky Map. Like GoSkyMap it’s an interactive planetarium.  I prefer to use it without the “point features”. It’s my Planosphere (Sky chart) in hand. Also includes things like Meteor Showers and radiants, a list of “what’s up tonight” showing rise and set times, moon phase, etc.  No Augmented Reality.
  • PhotoPills. Lots of things rolled into one app. Biggest complaints about this app are saving and reusing Plans, usability quirks, a grossly oversized moon or sun icon in the Augmented Reality modes and an inaccurate Milky Way representation. Oh, and I’d really like it if it would measure for me!  The planner would be great if I could have the Augmented Reality compute the Azimuth and Altitude (aka Elevation) for me, especially since it doesn’t seem to have a way to measure like the Inclinometer tool does. I see, for example where someone saved the “Manhattanhenge” event. It would be great if I could load it and click “find next occurrence”. That feature alone might be worth booking a flight to New York!
  • SpyGlass. Clever app with lots of onscreen information in Augmented Reality mode. We especially like the onscreen measurements which are saved when you grab an image.

Do you know of an app that’s highly accurate and will meet our requirements? Let’s hear about it. If it exists on an Android I’ll buy an android!

Photo Pills Ultimate App for Photography

Originally Published Nov 29, 2013
Last Updated April 18, 2016

For me this app is why I have a smartphone.  It has a lot of features, which makes it one of the most inclusive apps out there for photography.  Even just one of their modules would make up the entire functionality of others apps.  You are essentially buying many apps in one since is has a plethora of functions and shortcuts. It is going to take a long time to master so do yourself a favor:  sit down with it for a while read up and explore.   First go to the section on learning and learn! Tapping and swiping allows you to switch dates, times, modes, and more. Getting the feel of the app without trying some critical calculation will put you in a better frame of mind.


Steven likes to point out that the app is only as good as the hardware it is built on, and I can attest to this. Steven’s iPhone 4 compass and accelerometer must be off – the sun and moon locations are wrong by up to 10 degrees (more than 16 moon diameters).  Inaccuracy seems to also be a problem with the 4s and the 5s there have been many complaints. The iPhone 5 seems to have better sensors.  See the Macworld article: Six Phones Can’t Agree on Magnetic North

While the Macworld article is the result of poorly conducted calibration, the important takeaway is that the app can only be as accurate as the environment you run it in and the hardware you run it on. It can’t be said enough: trust but verify. Then recalibrate and try again.  Bring your own GPS and compass to verify the accuracy. We are not suggesting to use the iPhone as a navigation device just an aid. Apple maps didn’t work out so well remember! We are suggesting that this can be a useful device for the visualization of photos or getting an idea of your compositions and bringing your most accurate tools to bear. If you’re fanatical about accuracy, like Steven you can also bring your compass, maps, GPS, planisphere (ref 123,) and sextant.  Ok, the sextant was a joke but I wouldn’t be surprised if he has one. Steven is crazy about accuracy in predictions.

Navigation Basics

Navigating the app is easy to get started. Start swiping and you will be unlocking all sorts of functionality.  At first you will be surprised by all of the hidden things you are doing.  For me the first time I opened it up I was like, Wow, what was that? What did I just do?  Once you begin to get a little more advanced you will start to realize you may not be remember the proper, tap, drop, swipe, handshake combination to get where you want to go.  Generally it will take some practice but let me give you some tips out to help.

More content dots – The dots in the image below are a symbol that shows there is more content on this topic available just swipe in the correct place to the left or right.

More Content Dots

The next page dots are sneaky because they blend into the background.  However, they can be found in the same general location so just look to see if they are there.

Transition between right and left pages by swiping seeing the more content dots.

Transition between right and left pages by swiping by paying attention to the more content dots.

Previous page button – Found in the upper left.  This button brings you back to the prior menu, usually. It can be helpful for getting around the app so don’t forget about it. Even when it says something strange, it usually is a “back” button – except when it is not there and is instead a “Done” button on the upper right.  There are also important buttons that appear in the upper right so when you are finished look up there for some important info.  Like what you ask? The save button often appears here – or at the upper right.

Photo Pills back button on upper left.



Changing your location or a value generally requires just a tap however in some cases it requires a tap and hold or double tap.  My solution try them all.  In the planner, the map will find have some icons you can tap (sometimes by accident).  Or save yourself a bit of hunting by finding the Learn page and reviewing the options described there.

The Photo Pills Menu in all of its glory

Photo Pills

The three main menus of Photo Pills.


What does every module Do?

Here is a short summary:

My Stuff

Plans – Where your Plans are saved.

Points of Interest – Local points of interest. Over 10,500 all over the world! Also has a search functionality.

Settings – Calculations are based in the units of measure you select, on the Camera body you select.   I would suggest starting here. Imperial and Metric are the options.


Planner – The Photographer’s Ephemeris (TPE)-like functionality. Is used for Sun and Moon alignment planning similar to what we cover in our Catching the Moon Webinar.  Mostly used for planning, as well as scouting, but has some nice sharing functionality which will help in the organization of scouted locations on the fly.

Planner looks a lot like another program I know

Sun – Detailed information about Sun rise, set,  Time to set Azimuth Elevation, Distance, Shadow Ratio, start of different twilights (Civil Nautical Astronomical), Magic Hours (Blue, Golden), Calendar, Augmented Reality, Seasons, and Sharing (Facebook, Twitter,  email, or save as an image).

Moon – Detailed information about Sun rise, set, Time to set Azimuth Elevation, Distance, Shadow Ratio, start of different twilights (Civil Nautical Astronomical), Magic Hours (Blue, Golden), Calendar (Phases each day), Augmented Reality, Distance (Perigees and Apogees), and Sharing (Facebook, Twitter,  email, or save as an image).

Exposure – Allows you to determine equivalent exposures, that is equivalent brightness using different settings. Determine equivalent exposures by changing shutter speed, aperture, ISO. Will also help you understand how a ND (Neutral Density) filter will affect the exposure.  This also calculates the change in EV value.

DoF – Is a DoF (Depth of Field) calculator using your current exposure settings, (Camera, lens, aperture, distance to subject, lens set up teleconverter status), a DoF table, augmented Reality, and Sharing (Facebook, Twitter,  email, or save as an image).

Hyperfocal – A table which shows at a given focal length (14mm) and a given aperture value (F/1.4) what distance everything is going to appear in focus (15 ft 4in) to infinity.  We talk about it a lot now you have no excuse for looking it up.

FoV – Is a Field of View calculator using your current camera, lens, and distance to subject, Camera orientation (landscape or portrait) to give field of view information.  You can also inverse this so you know where to stand or use Augmented Reality to see it in the phones camera.  Oh and you guessed it; share (Facebook, Twitter, email, or save as an image).  Also allows you to find equivalent FoV settings between cropped sensor cameras.  One application Steven recently used was to determine what focal length to use to fill his field of view with Mercury, Saturn, Comet ISON and Comet Encke (136mm).

Night – Includes 3 main features Night AR, Star Trails, and Spot stars. Night AR allows you to see the location of the Milky Way, the rise of the moon, and the direction stars will rotate. Aids you in the pre-visualization of how long your star trails would be. Inversely, it allows you to calculate how long it would take for the stars to form a specified arc in the sky.  Finally, under Night is Spot stars which calculates the shutter speed necessary to make stars appear as spots without the aid of an equatorial mount.  For an in depth article on this subject, see here.

Time Lapse – Allows you to calculate data about your timelapse before you art.  Information such as Event duration in real time and as a final product, FPS, total number of photos and the file storage necessary to capture the sequence on your memory card.


Help – In depth help on the app, tips on the menus and how to navigate, what buttons do what.  There is a lot.  After a quick stop at the settings then go over here. Check it out.

About– Learn about the developers, Contact the support staff, rate the app, applaude the team.

The Awesome Parts

The app is just so big that I am not going to be able to cover all of it in detail.  There are a lot of parts of the app I want to touch on.

The data –  The data on every tab is amazing and detailed.  You want the data on what phase the moon is in, data on when the phases are that month.  The data just does not stop, it is not just the Sun or moon tab it is on FOV or DoF tabs.  For a guy who does a lot of panos all of the hyper-focal, FoV info is impressive.  I LOVE ALL of this data presented in a logical, clear and concise way.  But, wait we want more data.

Augmented reality – This is one of the most useful parts of the app.  For my money this was the best tool to teach and help students visualize where the North Star is and where the Moon and Milky Way is going to rise.  The overlay on the scene is the magic that allows students see where the Milky Way will be because it is super-imposed on the live picture.  There is AR for everything Night, Sun, Moon, Depth Of Field… Yes, even DoF – not a preview, but an on screen indication about the range of the DoF setting.   In my experience the AR has been accurate and responsive however this has not been everyone’s experience depending on your phone hardware.  I am told the inaccuracy issues are due to the hardware not the software, but that is not going to stop the complaining.  Can you use if for any scouting?  Well that is highly debatable (Steven and I have had heated discussions about this).  We would love to have more data on the photogenic parts of the Milky Way (i.e. Sagittarius, is much more deep and milky than Cassiopeia but the current depiction is rough).  Location of Stars to aid in the orientation.  I personally don’t care about the size of the moon.  Steven would like to see the size be more realistic – it’s currently shown about 8 times its actual size. I can foresee problems with people with bad vision or people not patient enough to search for the moon (I know a lot of those, bad vision not the part about being patient). The on screen display (AR) also doesn’t show the GPS, exact angle of elevation, or exact compass direction – the data is drawn in grids that are increments of 10 degrees vertically and 12.5 degrees horizontally.

But I digress, the great part about AR is that it can help you see what might be possible, when might the moon be near that object.  You may still have to do the work over again because we have seen the predictions be as far off as 10 degrees if you rely on the phone hardware for compass direction.   

The moon is 0.5 degrees if you are running photo pills with a bad compass (bad hardware or just a bad calibration) The moon could be 20 moon diameters away in this photo (10 degrees / 0.5 degrees = 20 moon diameters). The moon would be out of this frame in that case.

The moon is 0.5 degrees if you are running photo pills with a bad compass (bad hardware or just a bad calibration) The moon could be 20 moon diameters away in this photo (10 degrees / 0.5 degrees = 20 moon diameters). The moon would be out of this frame.


Planner – It is not as good as I would have liked.  My main gripe was the small screen is difficult to navigate and to pinpoint the exact point where the alignment is going to be.  One thing is that there is elevation profiler which will allow you to determine what the height of the object is on the horizon.  Useful yes but useless if there is a huge building in the way.  It also currently doesn’t have ready access to a Topo Map so determining where there might be a hill in the way is not simple – unless, of course you are on site..  I like the share options, in the Points of interest tab you can export all of your points to a KMZ file you can open in a map editor (like Google Earth).   The win for me was the portability, I always have my phone so I can just scout whenever I see something interesting so I can come back later.

I can plan a shot where ever I am, unless I need the map and am not able to get a data connection, that is.  If I see something interesting, I can check for an alignment right on the spot.  I can figure out if it is possible then bring out the big guns for double checking.  I think this is one of the biggest advantages.

One thing that tripped us up… there are two AR modes in the Planner. The outer one – which is for “getting an idea” and the inner one that appears after you start a Find operation. The AR choice after selecting Find allows you to use AR to set the location of your desired target. Point the display and tap it to place the moon or sun where you want to capture it. Remember, though, that the moon or sun will be shown about 12 times larger than actual size.

To close this app is the most comprehensive and inclusive of features, some planned usability enhancements will definitely kick it up a notch.

Enhancements We’d Like to See

What we would like to see alignment prediction tool additions.  Photo Pills has so much. Now that we have seen what it is capable of we want more.  Serious, understatement there because, honestly we what a whole LOT more, and that’s not to say we hate the app – not at all. It still packs more punch than everything else we’ve looked at.  However, as noted, we would like to see more data in the AR and in the planner.  We would like to be able to take a photo of the scene and have the all relevant data overlaid on the same photo.  Further, we would like to have access to the meta-data burned into the photo.  When we share a plan, it doesn’t seem to include the elevation (altitude), azimuth (compass direction) and tolerance information. We are geeks we want to write scripts to sort and map that data, and track our exploits much like Spyglass.

There are a couple of little niggles in the interface that are annoying. Lines that don’t get drawn on the planner map, accidentally resetting the observer location by dragging our finger over the “set location here” icon while scrolling the map, and others.

If possible, we’d like to see an “enhanced accuracy mode” so that you can be 90% confident that the AR alignment that you are shown will indeed be within 0.5 degrees.

Even though of how we’d like to improve the visual interface… but hey, that doesn’t mean it doesn’t work well as is.

How Accurate Is The Application? Participate and Find Out!

We want to collect data from testing in many environments on many devices, not just from our own half dozen devices.  Please do the following.

  1. Play with PhotoPills a bit to be sure you understand it.  Go to the help menus and learn about the AR and other functions.
  2. Kill your compass app and Photo Pills (all apps preferably). This is to insure that you have a chance to calibrate.
  3. Start PhotoPills. Go to “Moon” make sure that “Info” has the current time (double tap the center of the Moon).
  4. Click on AR.
  5. Verify that the current date and time are correct in the upper left. If not, go back to Info and double tap the Moon or go into settings.
  6. If/when the phone asks, perform a calibration on IOS 7.0 and later you “roll a ball around”. Older IOS versions may ask you to wave the phone in a figure 8. Hold your phone normally (Portrait mode)
  7. Point the camera at the Moon. Obviously the moon must already be up in the sky for this test. You CAN try this using the sun instead, but that wouldn’t be good for your eyes or the phone unless the sun is just rising or just about to set.
    Once your target is in view select the “Action” button (lower right).

    • If you have a Twitter account choose “Twitter” and send your photo to @starcircleacade be sure to include #photopillstest and your iPhone version e.g. #iphone4 or #iphone5s and your ios version e.g. #ios703.
    • If you don’t have Twitter, please use email and send your photo to
    • If you don’t have email available, you can save the image or post it to Facebook – just be sure to share it with us!
  8. Next turn your device 90 degrees to Landscape mode, spin yourself around a full 360 degrees (trying not to get dizzy), point the phone back at the target and repeat step 7.
  9. Super Extra Credit would be to take a photo of multiple iphones on a table all set to compass mode.

Please only send two photos one in portrait, one in landscape mode per each device you have Photo Pills on.   Thank you for your help! Also, please note that large metal objects (your car for example), computers, electronics and what-have-you will affect the accuracy of the compass. If you can move away from such things to do your calibration and take measurements that will help.

We will publish an update to this material once we get enough data to make some calculations.