Tag Archives: equipment

Exploring Night Photography: Lesson 6 BEST TIPS

Band of Techies by Steven Christenson on 500px.com

Twilight Panorama of the San Francisco Bay

Last week we talked about photo processing.  This week is the last week of the in-person course.

The topics covered in class included Astrophotography, suggestions on what equipment NOT to get for Astrophotography. We also discussed the limitations of Lightroom and Photoshop (see Lesson 5) because we did not cover them all in the last class.

To conclude our lesson series we present our greatest tips.  Many of the tips you may be familiar with – especially if you have been with us on a workshop. Some tips will be a surprise.

Our Best Night Photography Tips

  1. Shine a bright flashlight through your viewfinder at night and it will show you what is in your shot. Much easier to figure out where the edges of your frame are when it is too dark to see well.
  2. A flashlight will not illuminate the sky where your shot is constrained by your lens, but a bright green laser through the viewfinder can accomplish that!
  3. Put glow sticks or LED slap bracelets around your tripod at night. Not only can you find your gear easily, but others are less likely to trip over it.
  4. Have a blue LED light that you need to make less “cold”? Bounce it off the palm of your hand… or a warm colored shirt.
  5. Want to see well in the dark? Don’t wear a head lamp! Shadows and contours are hard to see when the light is coming from close to your eyes. Instead keep a DIM light at waist level. Bright lights ruin your night vision. And headlamps make it painful to talk to one another… you ruin their night vision when you look at them.
  6. Before you spend the effort traveling for night photographs, consult the weather and the moon phase.
  7. It is astonishing how much you can pre-plan a shot without having to go the location… hint: learn to use Google Maps + Street View!
  8. Don’t overlook the hundreds of tips we have for you here on this site… the search box is your friend.
  9. Dark skies are good… but better is to know which direction you want the sky to be dark so you can make the right compromises.
  10. Sometimes being behind a hill is a great help to prevent unwanted stray light.
  11. Want to photograph (or see) the best part of the Milky Way? You need to know when it is up. A planisphere (rotating star chart) is your best bet.
  12. Velcro is a great way to keep things handy and secure on your tripod. Velcro your intervalometer to your tripod.
  13. Lens hood – use one all the time to protect your lens and prevent stray light from causing glare.
  14. Do not use any filters – especially not a clear or “ultraviolet” filter. All filters make your image less desirable by causing extra surfaces that can reflect light and cause glare. Our only exception to this rule are 1: polarizing filters – which are useless at night, and 2: a filter to seal your lens in really nasty environments like rain and blowing sand.
  15. Test your tripod stability before you move away from it. If your tripod is secure, take a few steps back and make sure the center column is vertical.  It is common to set a tripod up so that it leans in a way that makes it vulnerable to a fall.
  16. Another tripod tip: on a hill or slope, put two legs on the downhill side, one on the uphill side.
  17. Short straps (or no straps) on your camera is better for stability if there is any wind at all. We have personally seen cameras thrown over by wind gusts.
  18. Do not cheap out on a tripod. A sturdy tripod is more valuable for night photography than a “better” camera.
  19. The histogram is your friend. Be sure to check it before you conclude your shot is a good one.
  20. If your tripod has a hook below the center column hang your camera bag on it for even more stability. Be sure you’ve taken out all you need before you start shooting. Oh, and this may NOT work well if it is really windy or your pack is light.
  21. Study the place you plan to go during the daylight. It is not fun falling in holes or stepping on nasty things while wandering in the dark.
  22. Take a friend along for added safety, camaraderie and comfort. Also you do not have to outrun a bear, you just have to outrun your friend. 😉  [Do NOT try to run from a bear, by the way. That just makes you look tastier]
  23. A ball head works a lot better for night photography than a pan-tilt head. But get a sturdy head! It is useless having a sturdy tripod with a head that can not stay put.
  24. If there is anyone who may care: tell where you are going and when you expect to be back. Stick to the plan, too.
  25. Do not assume you will have cell service – some of the most amazing places to photograph have no cell coverage at all. Oh, and your battery might die.
  26. Overshoot. It is so much better to have two or three times as many shots as you think you will need than to find out you did not even get one quite right.
  27. When shooting sequences or panoramas… use your lens cap between sets so you can figure out when one set ends and another begins. Take it one step further and do what we do: use your hand forming an E, N, W, or pointing down to indicate the direction you are facing when you take the shot.
  28. Dark gloves make great “emergency stray-light reduction” devices – and they can keep your hands warm, too.
  29. It will always seem colder at night than the temperature might indicate. Dress in layers.
  30. Planning to leave your camera shooting for a long sequence and walk away? Use a GPS to record the camera location (you can do this using most cell phone map software, too).
  31. Respect people and their property. Ask for permission. You may be amazed how much farther courtesy and thoughtfulness will get you than being an intentional trespasser.

Have a tip you think is really super helpful? Please comment below!

Last Week’s Homework

Photo edit a “better” foreground into a star trail image.

Final Homework

  1. Comment below with what you’d like to learn about next.
  2. Get creative and leave us a comment below with a link to your super image.
  3. Comment below with the best tip you have learned about doing night photography.

 

Heaven Light by Steven Christenson

Milky Way and Waterfall – we talked about how to get the Milky Way aligned where you want it. 

Exploring Night Photography: Lesson 3 – Gear

Two weeks ago in class we covered basics (what is a photograph, using manual settings) Last week we learned a bit about noise, and its primary causes – temperature being the principle problem. And we explored different creative directions under the umbrella of night photography. We also got outside under a half-full moon (first quarter) and shot on campus. And learned a little about the night sky.

This view is southwest. From left to right are Canis Major, Orion and Taurus. The moon is off the top edge.

This view is southwest. From left to right are Canis Major, Orion and Taurus. The moon is off the top edge. The glow in the lower right corner is the glow bracelet on one of the student’s tripods. The sky remains blue due to the moonlight. Settings for this shot are ISO 800, f/2.8, 10 seconds, 20 mm on Canon 5D II.

Now it is time to talk about gear. Fortunately we already wrote a nicely detailed article about gear. Take a look here. We even updated it recently.

Too busy to read the details? That’s a shame, but here is the super quick summary in order of importance:

  1. GOOD tripod.
  2. Night photography friendly lens (wide angle recommended)
  3. Decent camera body with an optical viewfinder. Full frame preferred, but not necessary.
  4. Layered clothing and good shoes, including lightweight gloves (G) – and heavy gloves in cold season.
  5. Sturdy camera bag
  6. Extra batteries and memory cards
  7. An intervalometer (1), and extra batteries (2)
  8. Headlamp (B) and flashlight assortment (C, 3, 6)
  9. Other needful things: clear shower cap (A), lens cloth, hand cloth.

What About Other “Gear”?

MiscGear
Here is what is usually in our bag besides the camera gear.

  • (H) Glow bracelet/stick to mark the camera location (we have just started experimenting with other methods, too, like the LED band (4).
  • Hand warmers (F and 5) and rubber bands (G) for dealing with dew formation
  • Creative lights – bulbs, keychain lights,  and cord (3, 4, 6, 7, 8, 9)  Item 7 is a green laser pointer.
  • Insect Repellant  (E)
  • Gaffers Tape – flat black duct tape (L). We don’t take a whole roll though!
  • A smart app that shows the positions of the stars, planets, and bright satellites. Also helps if it shows meteor showers.
  • A smart app that shows the location(s) of sunrise, sunset, moonrise and moonset.
  • A game or two on the smart phone to pass time.
  • An external battery to keep our smart phone juiced (5) and the appropriate matching cord.

Before We Leave We Also Use the Following

  • A star map (planisphere). On our desktop, we favor Stellarium, but it is a little geeky to use well. On iOS we like Sky Safari, Star Map.
  • Weather prognostication tool
  • Sunrise/set Moonrise/set predictions.

 

Last Week’s Homework

We asked you to pick a creative direction. Here are some shots our students took including “semi transparent” you, moving lights.

XNP_Alex_assignmentsTop: f/4 1/30, 500 ISO, 20mm; Lower photo: f/4,  1/4, 1600 ISO,  20mm. Bottom was from moving the camera body

 

XNP_Tracie_Assignment

XNP_Troy_assignment

 

This Week’s Homework

  1. Use the light you were given in class to write a message or draw an image in light.
  2. The moon is full, if you didn’t work out settings for capturing the moon. Now is another chance. If you did work out the settings, compare them to your last shot when the moon was half-full. Notice anything?
  3. Find a way to make a strong white flashlight a different color. Use the colored light to illuminate your foreground. Your light may have to be really bright to compete with moonlight.
  4. If you are using a “white” LED flashlight, you’ll notice it is significantly cold (blue). Can you think of a way to make it a warmer color?
  5. Is there any “Other Gear” listed above that intrigues you? E.g. what can you use Gaffers Tape for?

Next… Lesson 4.

The Elusive Milky Way – Capture an Image

I assume you already read part one of this article which describes a bit about what the Milky Way is and what times and seasons are best for photographing the cloud-like expanse of innumerable stars.  In this installment we describe the equipment and settings you will need.

Just Ahead: A Universe of Possibilities

f/2.8, ISO 3200, 30 seconds, post processed and combined with shots of the bridge that were lit with a spotlight.

Standard Capture

To get a passable or better image of the rather dim Milky Way you need:

  • A high performing low light camera (more on that in a moment)
  • A large aperture (f/2.8)
  • A wide angle lens. Ultra wide even.
  • A cool/cold night
  • As little city glow and moonlight* as possible – see below for an image taken in twilight
  • A solid tripod
  • Patience
  • To know where and when to look!

To get a recognizable Milky Way in a single frame, you’ll want to use somewhere between 2000 and 6400 ISO at f/2.8 or wider setting. That’s very high, and a wider aperture than many people have paid for.  You’ll also want to expose as long as you can before stars are streaking.  We recommend starting at 30 seconds, and reducing your exposure time if the streaking is objectionable. Below is an image taken when the rising moon was beginning to wash out the sky and this may be typical of attempting to capture the Milky Way in a less than ideally dark scenario.

Group Hug

Moonlight and Twilight begin to overwhelm the Milky Way in Alabama Hills, California; 30 seconds, ISO 3200, f/2.8, 17mm

Some image degradation is to expected. For example vignetting and coma are both more obvious at lower f/stops. Coma is a comma or “bird-wing” like appearance of stars near the corners of the image.  Both coma and vignetting can be overcome by stopping down the shot – but resist the temptation because stopping down means losing some or perhaps all of the wispy milky goodness that you are trying to capture. Exposing longer will only help if you have some special apparatus (see Tracked Capture below). Are you wondering why exposing longer does not solve the problem? We have tackled the issue in two different styles: a cheerful allegorical example, and a recent math savvy explication.

What will an image look like captured with 3200 ISO? It may look like the image on the left below which is “straight out of the camera” – but perhaps not for you as this image was taken in a VERY dark sky area in Nevada.  On the right is the same Milky Way with some simple processing we will describe in the next installment.

SOOTC (and not SOOTC) [C_039467]

What is a “High Performing” Camera?

I qualified my statement earlier by indicating a “high performing” camera is needed for a standard capture like those I’ve shown above.  Since it would be impossible to keep an up-to-date list of the current “high performing cameras,” let me instead point out a few characteristics common to all high performers:

  1. Recent generation (2 or 3 years since introduction) is preferable because technology has steadily improved.
  2. Large pixels (to collect more light).  A common measure of the pixel size is in microns. Generally this puts full frame cameras ahead of cropped cameras.
  3. High “ISO at Unity Gain” – this is a measurement of the efficiency of the sensor. There are two good sources for this information: the DxO Sensor Scores and ClarkVision’s (older) tables.
Don’t be fooled by the “highest ISO” setting advertised. That number is completely meaningless.
As of April 14, 2014, the highest performers are listed by manufacturer and in order of performance. E.g. the Nikon D3s is better than the D800 – though the difference is small. Indeed, the D800 excels in some categories over the D3s. Cropped cameras are shown in italics – note that there fewer of them and none of the crop cameras exceed their full frame siblings. The underlined Nikon cameras are literally the topmost performers over all cameras.

Nikon: Df, D3s, D4s, D600, D800E, D4, D610, D800, D700, D3, D3X, D3300, D5200, D7100, D5100, D7000, CoolPix A, D3200
Canon: 1Dx, 6D, 5D Mark III, 5D II, 1DS III, 1DS II, 5D, 1D III, 1D VI, 1D III, 1 D II
Sony: A7R, DSC-RX1R, RX1, A7, Alpha 99, Alpha 900, Alpha 850, A6000, Alpha 580, NEX-F3, NEX-C3, NEX-5N, NEX-3N, NEX-6, NEX-7
Leica: M Typ 240, X Vario
Phase One: P40 Plus, P65 Plus
Pentax: 645D, K-5 II, K-5 IIS, K5, K-50, K-01, K-30
FujiFilm: FinePix X100
Not in contention: any cameras by: Casio, Hasselblad, Konica Minolta, Mamiya, Nokia, Olympus, Panasonic, Ricoh, Samsung or Sigma.

The list above shows all cameras having a DxO Sports (low light) score of 1000 or higher.

Cameras like the Nikon D90, Canon 1D II N, Phase One IQ 180, Canon 1Ds, Nikon D3100 and Leica M9 fall just below this threshold and may also be suitable.  The first eight Nikon models outperform the Canon 1Dx, and after the 1DX is the Sony A7R. The Fujifilm just barely cracks the list in 43rd and last place.

If you want the camera to cost less than $2,000 USD your current top choices are: Nikon D610, Canon 6D, Sony A7, Sony Alpha 850 or the Nikon D3300.  If we were to make a recommendation, we’d recommend any of the full frame choices over the smaller sensor cameras.  Note that prices vary dramatically, and you may find used higher performing cameras for less than $2000.

Stacked Capture

A “stacked” capture is what you may need to resort to if your camera performance is not so spiffy.  The approach applies astrophotography techniques to create a lower-noise version of an image.  The technique requires MANY shots of the same view. However using this approach you will want to avoid having anything but sky in your photo. Terrestrial elements will make stacking the image tricky.

Urban Milky Way [C_036919-23PSavg]The image at the left is a stacked capture to illustrate the point, however it was done with a high performing camera and only 5 images.  A lower performing camera will require as many as 20 or so captures to combat the noise. The method is described in my a “Astrophotography 101” Webinar and details are walked through in Astrophotography 301.  On the other hand, this image was captured in a location where the Milky Way was quite faint – alongside 7 million people in the San Francisco Bay Area so there is hope even where the Milky Way can only faintly be seen.

Details about the stacking method appeared in an earlier column as well as in an an earlier webinar.

Tracked Capture

The last way to get a great shot of the Milky Way is to track the sky with an apparatus called an Equatorial Mount.  By tracking the sky at the rate of the earth’s rotation you can lengthen a 20 second capture to perhaps a 60 second one. You can also use several such captures to create a stunning “Stacked Capture”. Again, however, shots which include the land are a bit harder to pull off unless you resort to layering. What do you need to do a tracked capture? We cover that in detail in the Astrophotography 101 Webinar, but in short, you’ll want an Equatorial Mount of some sort – not an Altitude-Azimuth (aka Alt-Az) mount! A device that looks intriguing and not terribly expensive is the Polarie.

Once you get that image (or those images), you will no doubt want to tease the most pleasing photo you can out of your data. That is a topic we’ll cover in the next installment: Processing your Milky Way images.

Astrophotography Equipment Recommendations – Beginner to Intermediate

For basic astrophotography I recommend starting with a wide angle lens and a sturdy tripod.  That’s it. Go out there and get some Milky Way or starry sky shots. Take plenty and average stack them (after aligning them). More on this later.

To image things like the moon, planets, galaxies and nebula you’ll want to move up to a decent telephoto lens (200-800 mm effective focal length) and an Equatorial Mount.

Mounts

To my thinking there are 4 categories of mounts with their approximate prices and assembled total weight (excluding telescope or camera):

  • Light, single drive (e.g. the AstroTrac, $900, 15 lbs, the Polarie or the SkyTracker)
  • Cheap ($189) and probably useless to decent but limited AstroView Equatorial $350, 26 lbs.
  • Mid-range, accurate with features like autoguide ports, and GoTo: Celestron CG-5GT, $690, 42 lbs; Orion Sirius, $1150, 43 lbs; Orion Atlas, $1400, 76 lbs. All are heavy!
  • High end: A hefty hunk of metal with a hefty price point: e.g. Celestron CGE Pro, $4,400, 154 lbs.

In the examples I’ve shown mostly equipment from Orion for three reasons:

  1. I have Orion equipment and they have a local store.
  2. They have a good reputation for being helpful and consumer friendly
  3. Their website makes comparisons easy!

The Portable Solution

The best portable solution is clearly the well made AstroTrac with the power cable, finder scope (upper right) and the drive at the bottom.

MaierAstrotrac

To use this you need several other bits and pieces shown here excluding a standard camera tripod.

MaierAstroTracKit

It’s a well engineered, portable system. All the gear together (including tripod, drive, camera, telephoto lens, batteries, etc) is about 16 pounds – meaning you can carry it with you. The next closest equatorial drive solution is about twice that heavy.

The cost is a minimum of $680 for the drive, polar scope and power cable. But you’ll need some additional head components (about $210), a power supply of some kind ($30) and perhaps a sturdier tripod. The total outlay will be under a thousand making it comparable to the low end of the mid-range mounts.

PROS: The AstroTrac is easy to set up, and relatively easy to align if you use the geared heads and the polar scope. You can pack it in a suitcase or a backpack and take it on an airplane!

CONS: More expensive than a single drive equatorial mount. Only drives one axis (all that is generally needed). Maximum tracking time is about 2 hours. Repointing the camera may misalign the drive. Need to build or buy a 12V battery pack (though this is easy to do). Need to learn your sky to find things.

The Equatorial Mount

Go cheap, go big, go fancy… but you’re not going light.

OrionEquipmentRec

The AstroView – which I have – requires drive motor(s) for another $130 or so bringing the total outlay to about $380. It’s carry weight is about 35 pounds if you include the camera, and all accessories including counter weights.

PROS: Inexpensive, includes polar scope, lighter of the many mount options, can support modest refractor or small reflector. Tracks well.

CONS: No guide port, limited to about 12 pounds of capacity, no “GoTo” option so you have to learn your skies to use it well. Tripod is thin aluminum. It’s sturdy but may not hold up to extended use.

A step up from the entry level mount would be something like the SkyView Pro ($850) It includes a “GoTo” computerized control which is a great help to the novice and helps you with alignment routines. I’d probably opt for the Orion Sirius ($1150) however as it supports 10 more pounds (30 total) and for that extra $300 bucks you also get a polar scope, the ability to use a decently large telescope and fancier drive options. A highly recommend mount is the Celestron CG-5GT at about $690 add $50 for a polar scope. All of the GoTo mounts will “slew” (move rapidly and accurately) from one object to the next and you can enter the object into a keypad to get there. Save even more money by using your computer instead of the “GoTo” unit.

Attaching A Camera to A Mount

If you opt for a telescope mount, you will want to consider using a ball head for maximum ease of pointing the camera. However you CAN attach the camera directly to the dovetail bar and use it just like a telescope (with limitations on the field orientation). Here I have used a ring collar that couples my telephoto lens to the ball head. This allows me to rotate the camera to change the frame without having to repoint. It’s also better balanced.  There is enough room on the front of the dovetail to put another head and another camera.

CanonAstroAttach

BallHeadAstro

I even “cheated” and am using a camera as a counter weight – see it hanging there in front of me?

SLC_scopeAstro

Telescopes

If you decide to up the ante, here are a few commendable small, light refractors. None are “top of the line”, but I’ve had some pretty good success with the ED80. It’s biggest weakness is that it comes with no mounting bracket, and the focus mechanism is not the “dual speed” (fine focus) option that seems to help fine tune things. I did find that I could mount the ED80 on my scope without mounting rings by attaching it to a Vixen-style dovetail bar and a 1/4″ 20 cap screw. A hex bolt would work fine, too.  I drilled out one of the threaded holes in the dovetail bar.

OrionScopesRec

If you are thinking of going in all at once, various vendors offer bundles that might interest you.  Here are some examples from Orion (www.telescope.com)

OrionKits