Category Archives: Weather

Photographing Aurorae with a Night Capable Camera

Photo 1: Jupiter and diffuse, but bright aurora on our first night. f/3.5, 5 sec, ISO 4000, 20mm

This is part 2 of a multi-part series on observing and photographing an Aurora. Please read Aurora: The Bewitching Glow for background information including information about what an aurora is, when, how and where it can be seen, and photographs from Aurorae we observed near Fairbanks, Alaska.

So I Have to Get Lucky?

Before we jump into the details and the 3 keys for getting a good aurora photo, I think it is wise to set expectations about how likely you are to see a truly astounding aurora. Photo 1, above is one of the first captures I got on the first night on site (December 14). It was unexpected because the weather had been completely overcast all day. On December 17, the display was ASTOUNDING. I asked staff at Borealis Basecamp – which caters to aurora goers – as well as locals in Fairbanks, and I poured over the data to determine just how lucky we were to see the jaw dropping display we observed. The short answer is… “luck comes over time”. We used the Book and Hope method described in the first article to observe the aurora, arriving on December 14, 2023 and departing on December 18th – that is 4 nights onsite. But because we didn’t use the Monitor and Go method what we couldn’t have foreknown is how much the sun would cooperate with our aurorae dreams.

Diagram 1: M and X class solar flares in December, 2023.

Take a glance at Diagram 1, above from the SpaceWeatherLive.com archive. Fortuitously the most energetic solar flare (category X) in the preceding SIX YEARS occurred on the first day we arrived (and on New Years eve). The solar wind travels at over a million miles an hour (1.6 million kilometers per hour). But the sun is 92 million miles (147 million kilometers) away, so the effect of the flare on aurora production may occur in as little as 36 hours or as many as 4 days later. Even during a solar maximum events of this magnitude only occur infrequently. December 2023 saw two X class flares in one month – there were zero X class flares in the prior 5 months at all! The Kp Index exceeded 5 a total of 16 times in the 4 month period which means an exceptional once a week event might be a reasonable expectation during this part of the solar cycle.

Eli Fox, the chief photographer at Borealis Basecamp and the man who runs much of the Borealis Basecamp social media [Instagram] [Facebook] told me that exceptional aurora events occur on average about once a month or less.

A solid plan and good luck go hand in hand. But do not let that dissuade you. The displays we saw on two other nights were very pleasing and still produced great pictures.

Can I Get a Good Photo with ANY Camera?

Photographing aurorae is not different from the night photography we cover extensively on this site. If your camera is able to take acceptable Milky Way photos, it’s a good candidate – the aurora is generally much brighter than the brightest portions of the Milky Way.

Photo 2: Looking up. Bright fast moving aurora. Notice The big dipper at the left.
f/2.8, 2 sec, ISO 6400, 18 mm

While these articles are now starting to show their age, the principles still apply:

  1. High performing cameras (or see Which Camera is Better for Night Photography?)
  2. What to Look For in a Night Photography Lens

Surprisingly, some cell phones can do a respectable job and we will cover using cellphones in the next article in the series.

For any night photography the following minimums are recommended:

It also helps to become very familiar with the settings and controls for your camera and tripod – familiar enough that you can operate them in the dark with little or no additional light. That level of familiarity comes with practice… so if you are out of the habit, we strongly suggest practicing in your back yard (or in a dark closet). Practice while wearing the gloves that you intend to use! I discovered that merino wool glove liners were sufficient to keep my dominant hand warm even when the temperature dipped to -20F – but there was no wind and I avoided allowing any snow to remain on my glove liner – preferring to use my gloved hand or jacket sleeve when brushing away snow. Snow on my glove liner would have melted due to my body heat and made me miserable. I carried a pair of outer gloves with me, in fact, I kept a glove on my non-dominant hand at all times while my dominant hand had only the glove liner. The other outer glove remained in my pocked with a chemical hand warmer activated should my hand get cold!

Additional Photo Gear for Dealing with Excessive Cold

I brought quite a lot of gear to prepare for the affects of extreme cold on my person and my camera equipment. The camera equipment I brought included:

1. Five power banks – these were used to power “dew heaters” (aka lens warmers), as well as heated clothing.
2. Four of the powerbanks also were hand-warmers, most have built in lights.
3. Pouches in which I could keep the powerbanks, chemical handwarmers, as well as cables.
4. A large sealable plastic bag that can hold the entire camera and lens.
5. Carabiners to hold the pouches to my tripod.
6. And my standard practice of affixing velcro to key places near the top of my tripod with the mating velcro on the back of my intervalometer(s). This keeps the intervalometer in a usable place and prevents it from falling or catching the wind.

The pouches had operational electric hand warmers or chemical hand warmers to keep the power bank in them warm. I thought about, but did not use external batteries for my camera. Conceptually using external batteries permits using a larger battery (or using plug-in power) as well as keeping the camera batteries warm without warming the camera. The extreme cold is GOOD for your images. Deep sky astrophotographers typically use super-cooled sensors for their work, and your camera benefits from the cold, too, in the form of less noise.

If you use chemical hand warmers (charcoal, salt and iron filings), they need some airflow to keep generating heat – so don’t put them in a bag with no airflow. Indeed, if you want to reuse them, you can put them in as small a possible plastic bag to extend their life.

However I did keep spare batteries in my interior pockets where my body heat would keep them warm should I need to swap batteries. With the power banks, I also brought extra cables, an extension cord, and a 7 station USB charger. Of course all the regular stuff is needed, too… battery chargers for your camera batteries, cables, lens cloths and more. Another item I strongly recommend is gaffers tape which you can use to seal viewfinders, and lock down focus settings. And a large Ziplock bag. I also like to use a lens band (basically a large rubber band) to prevent focus or zoom settings from changing unexpectedly.

What Can Go Wrong?

Several aurora photographers wondered why I brought dew-heaters (lens warmers). These devices wrap around the end of the lens and via a power bank keep the lens warmer than the surrounding air to prevent dew (condensation) or frost from forming on the lens. Those with more experience than me typically did not use such devices because in the extreme cold dew is not typically a problem. BUT I did have complications I didn’t anticipate. In warmer, more humid climates, dew heaters can be the difference between getting a shot of “lens fog” and getting a great night shot.
The lens warmer is attached by cable to a power bank. More than once the pouch containing the power bank got bumped off my tripod yanking down on the lens ring which, unfortunately, altered either the zoom or the focus of the lens. In part for that reason I stopped using the lens warmer. But I did notice that more than once my breath crystalized on the outer lens surface. The take away here: in the extreme cold, keep your breath away from the camera as much as possible! And if you do use a lens warmer, find a secure way to attach it to your tripod so it can not yank on your lens.

From time to time I would use the viewfinder to frame my shot. But on my Sony Alpha 7R III camera, the frost from my breath condensed on the viewfinder resulting in two problems. The moist air from my breath froze on and made the viewfinder cloudy and I couldn’t see through it, and the sensor that turns off the back LCD when your eye is at the sensor got confused and refused to turn the LCD on. Effectively I was unable to use the LCD or the viewfinder to make adjustments. Fortunately this happened as the aurora was quiescing so I put my camera in a SEALABLE plastic bag, and brought it indoors.

Bag Your Camera! And Other Tips…

Why bag your camera? If you take your very cold camera indoors it will almost immediately form frost and condensation in the warmer more humid air – much like your iced drink glass forms condensation. Unfortunately condensation can occur INSIDE the lens and INSIDE the camera (e.g. on the sensor). Whenever I move the camera from a cold environment to a warmer one I bag and seal it and keep it in the bag until it has warmed to room temperature (about 1 to 3 hours). I can take it back out to a cold environment immediately if I wish. Keeping desiccant in the bag is not a bad idea, either! Oh, and you may find it advisable to remove your memory card and battery from the camera before bagging it so that you can examine the contents of the card or charge the battery while you have the bagged camera in a warmer environment.

Another unanticipated problem was that the extreme cold made the intervalometer cord quite stiff. It behaved more like a coat hanger than a wire. I strongly recommend using either a corded, or cordless intervalometer – you need it as a shutter release. The reason for the shutter release is to keep from adding any shake or wobble to the process of taking a photo – which occurs just by pressing the shutter button. A shutter release locked in “on mode” also allows you to take endless shots unattended which if you wish, you can assemble into a star trail like the photo below.

Photo 6: Applying Comet style star trails (with a satellite) (97) 6-second exposures. (each f/3.5, ISO 4000, 19mm) Total 9 min 42 secs.

Finally, I had difficulty adjusting the settings using the top dial on my camera – I believe also due to frost from my breath. I say “I believe” because it occurs to me that with my lightly gloved hand I may have been trying to rotate the function knob instead of the upper adjustment wheel. REMINDER: Get familiar with your camera before you get into the exciting environment where you may easily forget a step or two while gawking at the sky.

The Three Most Important Aurora Tips

Once you have all your gear, have a solid tripod (which you set up properly and securely) and are ready to begin photographing the amazing aurora… there are three very important things to NOT skimp on doing and double checking.

  1. Confirm (check) focus frequently especially after any bumps or changes in zoom.
  2. Do NOT judge the quality of the exposure by the display on the LCD. The only way to insure a good exposure is to look at the histogram (separate RGB channels is best).
  3. Adjust your exposure as needed to meet the circumstance. Aurora can go from dim to very bright and very bright to dim. They can move hardly at all, and they can dance about in the sky at a dizzying pace. So this means not only should you pay attention to those exposures, but you might want to avoid fixating on one area of the sky.

Tip 1: Checking and Setting Focus

The best way to check focus is to shoot an image and zoom in and check for the sharpness of any stars on the LCD. The best way to get focus right is to pre-focus at infinity when there is sufficient light (e.g. using a streetlight, the moon or a very bright star). While cameras can SOMETIMES successfully self focus most of the time they cannot without bright, motionless light in the distance. One way to get a good focus is to use live view, zoom in and hand adjust focus until a star is as compact as possible. But do not stop there… TURN OFF auto focus! You can set some lenses to “MF” or “Manual Focus”, but another strategy – perhaps easier – is to set your camera to do focus only when you press a separate focus button. Typically a camera is set to focus as you press the shutter – and that’s definitely NOT what you want.
If you’re not sure where to focus, we recommend either focusing on stars or if that seems difficult, you can focus on anything that is more than 50 feet away from you and that will be sufficient for wide-angle lenses.

Then take an exposure and confirm the focus is spot on. I took a whole sequence of exposures with lovely snow flocked trees in the foreground, but I made the mistake of not confirming my focus was spot on! It is also worth noting that the aurora may be diffuse and therefore not have a clear focus point… so don’t judge by the aurora! By the way, we also strongly recommend that you set a fixed White Balance (e.g. cloudy or daylight), disable long exposure noise reduction, and turn on high ISO noise reduction.

Some cameras have a “focus peaking” setting that you can enable. Focus peaking colors those areas of the image that are in focus (red is easier to distinguish in a night shot). This tip comes from Eli Fox, and is something I did not know is present on my Sony!

One last tip, focus MAY change as the lens gets colder or warmer – so do check periodically.

Tip 2: Verify Proper Exposure using the Histogram Feature

Diagram 2: An aurora photo with over exposed elements (see red pointers). The histogram (top right) shows a spike at the right – brightest end – of the range.

My modus operandi when shooting is to hand shoot a few images doing the focus check AND a histogram check before I set the camera up to take continuous exposures. I then periodically stop the exposures to double check the histogram. One additional help here is to turn on over exposure highlighting if your camera supplies it. With that feature on, over exposed areas will generally blink where there are overexposed pixels to let you know what areas are over. Overexposure is very difficult to recover from. The goal is to minimize the overexposures but get the images as “bright” as possible to capture the most information. I then usually shoot a shot with the lens cap on (or my hand covering the lens) so I can tell that I’ve changed settings or adjusted the field of view. Elements at the “bright” end of the spectrum by themselves don’t mean there are over exposures. By the way this is also why we strongly recommend you shoot your photos in RAW – or like we do RAW plus the smallest JPEGs.

Tip 3: Do Not Fixate

This tip has two parts. Do not forget to recheck at LEAST your exposure histograms periodically, and do not fail to look around in the sky. While you might have the perfect foreground, the aurora behind you or above you may be the most spectacular thing you will ever see. If you do not get a photo, it may as well have never happened! And while we are on this subject, do you notice how GREEN the snow appears in the right side of the photo below (as well as earlier photos)? They are reflecting the predominate color (557.7 nano meters wavelength) coming from the aurora. This is one of the possible problems with obtaining natural looking aurora photos.

Photo 5: The recorded color (right) gives an eerie green, but the left is hand desaturated in post processing.

As noted in Aurora: The Bewitching Glow (part one of this series), there are other colors as well. This can have the affect of making the landscape look “eerie”. Eerie landscapse can be combatted in two ways. One way is to be thankful for and take advantage of light pollution (or some moonlight), and the other is to post process the photo to desaturate the areas that look unnatural e.g. as is done above in photo 5. All the other rules of good photo composition apply as well. If the photo would look pleasing without an aurora, then it will be even better if there is an aurora. But if the scene is chaotic or not well framed, it will take an incredibly amazing aurora to save it. I think the main take away here is: experiment with different compositions, directions and settings.

One last point. The aurora can move very slowly or surprisingly rapidly. If you take a long exposure for a fast moving aurora it will “smear”. But a dim, slow moving aurora may require a longer exposure or a higher ISO or both. Consider the examples below. At the left is an approximation of one ten second, ISO-6400 exposure (f/2.8, 18 mm) created by combining 5 2-second exposures and the second is a single 2 second exposure. The “eye” of the aurora is overexposed and much of the swirly detail is lost. However even if the ISO had been dialed down or the aperture stopped down to prevent overexposure, the capture over the longer time interval would lose some of the fine detail – in much the way that a moving flashlight or a moving camera would create a smear. But do notice that more stars are visible in the longer exposure because 10 seconds is sufficiently short for an 18mm shot that the stars themselves are not smeared (much). To understand this a bit better, the best resource we know of is
described in our article: 600 Rule?

In fact, if you’d like to get an idea how fast an aurora CAN move in real time, here is a video sequence – not a timelapse – from Eli Fox

VIDEO: Real Time aurora used by permission from Eli Fox.

Well, that’s it for how to use a “night capable camera” to take aurora photos. But stay tuned, we have at least two more articles on the subject coming soon including:

How to Take Aurora Photos with a Cell Phone

All about Borealis Basecamp

As always, feel free to ask questions using the comments below. Thanks for the gift of your time reading this… and if you’ve found value in it, please do share the link with those you know who would appreciate it.

Cross Country – Things Learned Driving East to West (Parts 1 and 2)

Last revised 6/14/2019

San Jose to East Coast by plane and then driving back over 15 days

If you already read this and are looking for the rest of the article (parts 3, 4 and 5)… Look HERE.

Steven’s father passed away last December and the family decided to hold a memorial in Smith Mountain Lake, Virginia on Memorial Day weekend. Seemed entirely appropriate as that is when all of dads cross-country scattered kin could convene… that and dad also served in the Army during the Korean War era. What I hope to illuminate in this article are some of the considerations to consider to take a multi-day or longer car trip. In this case, we flew to Roanoke Virginia via Chicago (the upper line) and then drove my fathers car back from Smith Mountain Lake through Virginia, North Carolina, Tennessee, Arkansas, Oklahoma, Texas, New Mexico, Colorado, Arizona, Utah, Nevada and finally California.

I’ve divided the discussion into the following sections:

  1. Trip Planning Tools (Excel and Google Maps proved to be the most useful)
  2. Supplies and Provisions
  3. Booking Lodging and Excursions
  4. Photography and Night Photography Considerations
  5. Lessons Learned (What went wrong, what went right)

Trip Planning – Google Maps + My Scenic Drives + Excel

The way I started was simple: fire up google maps, enter my beginning city, added known stops (arranged east to west) and see what happened. To travel directly from Moneta, Virginia (Smith Mountain Lake) to San Jose mapped out as 40 hours of driving over 2722 miles. Since our actual mileage was 3982, clearly we did not take the “straight path” which would have been I40 nearly the whole way. One of the limitations with Google Maps is that you can have a maximum of 10 stops – unless you’re willing to do strange unnatural acts (or create your own map). But the key here was to see what the total distance was. Next I looked at breaking the trip up into digestible bits. The goal was to NOT drive more than 8 hours total in a day. And more significantly, to not be “on the road” more than about 10 hours including stops for sightseeing meals and potty breaks. Google maps was a bit unwieldy as I added more destinations and re-routed the segments to include driving to and through places of interest. One of the nice side benefits of using Google Maps, though, is that I could pull up the map on my laptop and send it to my phone directly. The phone then served as our GPS since the 12 year old navigation system in the car was clearly out of date.

One tool that I spent a lot of time on, and certainly helped was “My Scenic Drives“. The interface is a little clunky but My Scenic Drives can automatically divide up your driving based on time, but its method is not ideal. Indeed, the best use of My Scenic Drives was to “Find Nearby Attractions”. That proved to be it’s forte. “Avenue of the Ancients?” Why yes, thank you. “Valley of the Gods?” OF COURSE!, Chaco Culture, Mesa Verde, Bisti Badlands…. nearly all of these were suggested when searching in New Mexico, Arizona, and Utah. At one point I had at least 70 items “on the map” as potentials, and I paired it back to a mere 50. Reality eventually set it and I paired it back much further.

My Scenic Drives was quite useful for finding places of interest near or on the route.

I had a core list of must go places which included White Sands, NM; Monument Valley, UT; Lake Powell, AZ/UT; Lower Antelope Slot Canyons, Page, AZ; Toadstool Hoodoos, Kanab, UT; Valley of Fire State Park, NV. To that list there was a long list of LIKE-to-GOs that included Chaco Culture, Avenue of the Ancients, Mesa Verde, and many more. Since my wife traveled with me, it was also important to include stops and destinations that were of interest to her as well.

El Paso, We Have A Problem

Ultimately the reality of the distances, vehicle choice and time constraints dictated what stayed in and what fell out of the plan. And THEN it got even tougher… Scheduling it on some days required to-the-HOUR timing. To be clear, not every day needed to-the-hour scheduling, but 2 of the 14 did… and that’s when I turned to creating an Excel spreadsheet. The spreadsheet helped in a number of ways: accumulating miles (and thus predicting fuel costs and tracking lodging costs), accumulating time, and also keeping a record of addresses, reservation numbers and status… and more. The reality of one of the days made me realize that from Farmington, NM to Monument Valley, AZ, it was just not possible to go through Avenue of the Ancients AND Valley of the Gods as well. The reason: I had booked an overnight photography tour of Monument Valley and HAD to be at the View Hotel in Monument Valley by 2:30 PM or the photo tour was in jeopardy. It worked out just fine, however, as the Mrs. wanted to visit Four Corners, so we timed our Farmington, NM departure to arrive around opening time at Four Corners (a Navajo nation stop) and then budgeted time at the additional stops. Fortunately we ended up about an hour ahead of schedule on that day, and were able to take a brief detour into Valley of the Gods.

To accommodate our desired focus points, we elected to “force march” from Raleigh, NC to Amarillo, TX with no sightseeing except for one lunch stop in Omni Oak Grove in in Asheville.

Oak Grove Inn View, Asheville, NC

That’s nearly 2/3 of the total east-west distance, and we did it in three LONG days (each less than 8.5 hours of driving, however). I micro managed the stops. The locations I picked for lodging initially were Knoxville, TN, Little Rock, AR; and Amarillo, TX. But the Little Rock to Amarillo drive was almost 9 hours, and the Knoxville to Little Rock was similarly long. There was also the matter of potential rush hour traffic, so the plan changed to drive 40 miles farther west on the first day (Harriman, TN), and about 20 miles farther west the next day (Maumelle, AR instead of Little Rock). That evened out the driving a bit more and got us away from major cities during rush hour. Mind you I still had to find cities with decent lodging. While I might be willing to stay alone in a flea bag hotel for a night, that wouldn’t fly with the Mrs. Choosing better lodging made the trip better overall, anyway!

One thing I highly recommend doing is making sure to add in an extra day or two here and there for two reasons: one is to have a cushion in case you run into delays, or find places more interesting than you expected, and the second is perhaps obvious: rest is good! No sense hauling your luggage into and out of the car twice a day every day. We elected to stay two days in Albuquerque, NM; and three days on the Pacific Coast of California – the latter came about because Las Vegas was just TOO hot to stop, and we needed some cooler “wave time”.

What I wish I had done was to pick the same “chain” of hotels as much as possible. But my strategy of not booking everything in advance proved helpful for changing plans as needed. See the Booking Lodging and Excursions (part 3) for the rationale behind each.

Maps Can Lie – BEWARE!

One last comment about using any mapping software (Google Maps, for example), is to inspect the path carefully. I’ve seen mapping software make bone-headed decisions. On the planning for this trip, for example, it routed us over about 50 miles of dirt-road driving until I forced it to pick a different route by adding intermediate destinations. Once in California, the mapping software assumed that the East Pinnacles National Park and West Pinnacles National park were connected by a road – but they AREN’T. The best you could have done is carry your car about 3 miles over a foot path… And of course there are many examples where people have relied on outdated maps of places like Death Valley and ended up in a heap of hurt.

Supplies and Provisions

Because we were flying from the West Coast to the East Coast, we couldn’t possibly take all the provisions we would want on the plane. Some of the things that just were impractical to take included:

  • A cooler for drinks (plus snacks and ice)
  • A tow strap (in case we got stuck in sand or mud somewhere)
  • Bits of carpet for traction
  • Jump Start cables & jump start battery
  • Keurig Cartridges
  • Supplies, blanket / pillow
  • Gallon or more of water
  • Quart of the proper oil
  • Gallon of Bug / Windshield cleaner

And despite my normal camera-bag-full of equpiment (2 cameras, lenses, two tripods, etc), I elected to take ONE camera – the Nikon D600 – and ONE lens (24mm manual focus), and one tripod. I also took my Mavic Drone, but was only able to use it once… most locations prohibited drones, the wind was excessive in other locations, and a complication with the software made it impossible to use in one area that I wanted to use it… more on that in the Photography and Night Photography Considerations chapter.

My father’s car is an older model Lexus and so it wouldn’t be suitable for going down the bumpy off road areas where I might take an AWD high clearance vehicle like my Subaru. I also knew that some of the destinations included driving on unpaved roads. Indeed, some of the destinations that we removed from our itinerary were removed because of the off-road driving required. Since we clearly couldn’t take all needed provisions on the plane with us, and it was not clear that we would be able to acquire all that we desired, I used Amazon to order and have shipped to my father’s house the hard-to-find supplies that I needed. We figured we could pick up a cooler, snacks and drinks, water, oil and windshield cleaner along the way. Indeed, after we noticed that the first two lodgings had in-room Keurig machines, we bought Chai and Pete’s coffee cartridges. I am a Chai drinker, and my wife is a coffee snob. Only about 40% of the places we stayed had such machines, but when they had them, it meant we could enjoy our normal morning and evening beverages.

In Case of Emergency

For our peace of mind, I purchased and activated a plan on a Garmin InReach mini. I had the device shipped to my home before we left so that I could make sure it worked, and the service was active. The Inreach mini is a portable satellite communication device that can be used to track your location –

Emergency Communication and tracking

indeed that device supplied the tracking information for the map presented at the top. One of the plans allows you to track your location every 10 minutes – you can see I turned on tracking somewhere over Nevada on our flight out. The mini can also be used like the SPOT emergency location device to send 3 different canned messages to pre-canned destinations. The mini is about twice the cost, but it’s bi-directional. The messages I chose were: All is well, just checking in when arriving at lodging for the night; Look what I found to mark a particularly interesting place for posterity; and Delayed, or rerouted to indicate we were fine, but not going to arrive as planned. The device also allows an SOS to be sent, and you can then communicate by text with the emergency personnel to indicate what your needs are, and they can text you to indicate their status. Fortunately we had no need of sending an SOS, but there were many areas where we had little and NO cell coverage on either Verizon or ATT (my wife and I have different plans on purpose), so the peace of mind was worth the about $50 of service… and no doubt I’ll use the $300 device in the future.

Enroute Planning

Strorms Ahead. (Actually the blue is from shooting through the screen in the top of the windshield ;-), but it did dump a heap of rain and hail on us just a bit father down the road in Oklahoma.

It wasn’t enough, of course, to merely plot out the path. We also had to be mindful of the weather and road conditions. I’ve written extensively about how I >> plan for weather << so visit that link to learn how I use Weather.gov to be aware of what is going on. On this particular trip, we drove through the middle of the country prior to and during tornado and flooding events. Without the maps, we might have ended up in the wrong place at the wrong time. As it was, a tornado struck 1 mile away from our path two days prior to arriving (El Reno, Oklahoma) and major flooding was experienced in Little Rock and Fort Smith, AK the days of and following our trip segments there. Amarillo, TX and Roswell, NM were also hit with violent thunderstorms, and we used the forecast to refrain from heading up into Santa Fe, NM due to severe storm warnings. One Android tool I picked up and used was the NOAA Radar app. That offered alerts about nearby events – it was worth one month of subscription at $3 just to get those!

One of the other things that I discovered, but wasn’t aware of is that Google Maps in addition to notifications of slowdowns and road construction also has notifications about speed (radar) traps. We weren’t speeding anywhere, but the heads up certainly came in handy in case we decided to “blow the doors off a slowpoke driver” at an inopportune time.

Keeping Cool

Sugar free beverage + excellent “ice bottle”

We did acquire a decent cooler, small enough to fit in the backseat, but with a velcro latch so that it would be easy to open while underway. It had to be spacious enough to hold a half dozen drinks, ice AND chocolate. Since it was quite hot during our trip, even a short stint with the A/C off would result in a choco melt-down. I employed a trick I often use when hiking. After finishing an Ice beverage (sparkling sweetened drink), I rinsed it and refilled it with tap water. In lodgings that had a freezer component of the mini fridge, I put the refilled bottles in the freezer. Those frozen bottles then served as ice, and in a pinch, cold drinking water on some of our hot hikes. Do not try this with your average bottled water, however, they are too thin and flimsy to stand up to freezing.

It is also a good idea to buy a one or two gallon bottle of water that you can use for drinking (when the tap water is sketchy), and as an emergency source of coolant should your car need it.

See The Rest of the Article!

>>> Click here for parts 3, 4, and 5 along with many photos! You’re also welcome to use my excel planning sheet for yourself. The sheet contains links to the maps I used (divided into daily segments), a TODO list, as well as a heap of web references I used to select the events and locations I visited.

Sky Drift

Geometry and The Moon

Please do not run away. We are about to use adult language here. For example we will be using the word trigonometry. Still here? Good.  Here is a very pedestrian looking lunar eclipse photo taken with a 280mm lens*, cropped.

Near and Distant Neighbors

Very Ordinary Photo of the Lunar Eclipse with the planet Uranus in the lower left.

This past lunar eclipse several of us put our heads together to try to come up with a more creative photo than the one above. We had a trigonometry problem, however. On the West Coast the last moment of totality occurred at 4:24 AM PDT. We were brave enough to be out at any time of night – even if it meant extreme sleepiness in our day jobs but our problem was that the lowest the moon would be in the sky at the last bit of totality was 32.6 degrees above the horizon. We determined that angle using Stellarium, by the way. Unfortunately there is pretty much nowhere to go to get a nice large moon near an interesting object when the moon is almost 33 degrees high.

Wait: Why do we want the moon and the object to be similarly sized? Here is why… we want the moon to be noticeable like the Fantasy version below, not merely “present” like the real photo on the right. Even bigger would be better, right!?

N_281-608714+C_281-8150

Notice above right (Reality) and below how tiny the moon is compared to the building in the foreground?  Indeed, if you see a photo taken from anywhere on the West Coast where the eclipsed moon is significantly lower in the sky or larger than shown against foreground, you know it has been “photoshopped“.

Plan C: San Jose City Hall Eclipse Sequence

In short, it is nigh impossible to get the large moon effect with an altitude (angle) of 32 degrees here is why:

Calculating the Angles

Calculating the Angles

Just how far away do we need to be in order to get the moon the same size as an object of interest:

114.6 x object size

In other words, an object that is one foot tall, requires us to stand 114.6 feet away to make the 1/2 a degree angular size of the moon the same angular size as that 1 foot tall object.  The number “114.6” is from this calculation:

1 / TAN (0.5 degrees)

Yeah, that is trigonometry. Using still more trigonometry it is possible to calculate how high above the horizon a 9 inch tall object has to be so that it is “moon sized”.  We did that for you in the “Calculating the Angles” diagram above. Once you calculate the distance from the camera of 85.9, you can multiply that by the sine of the angle to calculate a height of about 46 feet! Here is the trigonometry:

Height = 85.9′ * SIN (32 deg)

You can go one step farther and calculate the distance from the object with ‘distance = 85.9 * COS(32 deg)’.

Of course after all that calculating you will still need to find a location, have contingency plans for weather and so on. At StarCircleAcademy we have built some tools and put together materials to help in all these endeavors.  We teach these things in our NP111 Catching the Moon Webinar.

The Road To The Temple

Below is where we ended up. This image is from our friend and co-conspirator Andy Morris.

Lunar Eclipse over Temple by Andy Morris of PhotoshopScaresMe

Four of us plotted and schemed to get an interesting shot. Above is Andy Morris’ result.  Click the image and you can read a great article about how he created the shot using Photoshop Skills at his site: PhotoshopScaresMe.com. In fact, it’s a great article which we strongly encourage you to read. You’ll learn how he composited the images together in Photoshop as layers.

The Long Conversation to Pick a Location

Andy has more details including how alcohol played a part in the process. Mostly I, Steven, was the wet blanket explaining why the geometry was all wrong.

  • The Stanford (Hoover) Tower looks like it is shrouded in trees from the needed angle
  • Bank of Italy (formerly BofA) in SJC doesn’t work
  • The main problem with the wind turbines is that the angle to the top of them is something around 12 degrees above the horizon which is 40 moon diameters below the eclipse.
  • Here is why the GG Bridge doesn’t work…
  • This seems to be the best solution I could find: the Coit Tower…
  • Darn. It would appear the coast is out. Forecast calls for Fog from SF to HMB
  • This might make an interesting foreground (see below)… Somebody want to check if they will mind us being on their property in the wee hours?

*Ok, we lied, it was actually a 70-200mm lens with a 1.4 TC on a full frame camera, but the net is the same: 280 effective mm focal length.

Where did you go and what did you get in your planning efforts?  Post a comment and link below… we’d love to see what you came up with!

Plan C: How To Plan a Time Sequence Shot

If you missed the last total lunar eclipse, don’t worry. You’ll have another chance in October, 2014. For that, I’m grateful since as you can see I had some problems with my apparatus (the CamRanger). The battery failed after the 7th shot of the moon you see below, and then it stopped working again after 3 more shots, and needed to be slayed and restarted just as the moon was transitioning to fully eclipsed.

But this column is not about our troubles, it is about how I planned for the lunar eclipse shot you see below.

Plan C: San Jose City Hall Eclipse Sequence

 

The planning began with a list of possible foreground subjects. The San Jose City Hall Rotunda was “Plan C” and the least well researched of my plans. What were plan A and B? Those were one of my favorite lighthouses and a favorite landmark in San Francisco, California. For each arrangement I had to:

  1. Calculate where to stand to make sure the moon would be in an interesting phase above the object. The plan required solving these problems
    1. Determine how high in the sky the moon would be (to know what viewing angle was best)
    2. Determine which DIRECTION I needed to face to capture the moon.
    3. Determine how “wide” a lens I needed to get the sequence I wanted.
  2. Monitor the weather at each location.

After planning all that was left was to make a last-minute decision where the most likely target would have favorable conditions and make any final on-site adjustments.  I had a Plan D, too… but it was also in San Jose so it would have only been chosen had I found some serious obstacle at the City Hall rotunda.

San Jose City Hall Panorama

Calculating the Angles

Determining the angles needed is pretty simple. I used The Photographer’s Ephemeris including all the nifty tricks we teach in our Catching the Moon Webinar. Below you can see a screen shot from the Photographer’s Ephemeris which shows the moon altitude and direction at the beginning of the eclipse. I also moved the time ahead to show the same for the middle of the eclipse.  The moon’s altitude angle (32 to 41 degrees) gave me an idea how close to be to the rotunda to get the moon overhead.  Lower angles allow me to get farther away which allows me to photograph the moon larger relative to the foreground object. This eclipse, however, and the one in October will have the moon high overhead.

Coming up with a Foreground

There is no good substitute for knowing what interesting foregrounds are possible. And also knowing which direction(s) you should be facing.  I knew that the San Jose City Hall Rotunda was generally easterly because I had watched a sun rise through it. I also knew that the eclipse would be at maximum when the moon was in the southern sky so I knew that the range was SE to S directionally.  You can see a diagram from The Photographer’s Ephemeris below for more complete planning.

Calculating Where to Stand

I had to know approximately how tall the foreground object is. For the San Jose City Hall I flat-out guessed.  I found the overall height of the building through Google, and I guess the Rotunda was 60 to 80 feet tall.   My original calculations had me much closer to the building… it was only when I got on site that I realized that there were adaptations that needed to be made.

Watching the Weather

Remember that the Rotunda was plan C.  I kept a close eye on the weather for each of the planned sites.  My favorite weather app is provided by weather.gov – in particular the hourly graphs. We talked about this tool in detail in a prior column.  Why do I like it so much? Because it gives me numbers instead of “partly cloudy”.  It was pretty obvious that the coastal region for Plan A, and the San Francisco Landmark (plan B) were likely to have bad weather – both fog and clouds. Indeed my friends who headed those directions were frustrated by poor visibility.  We had clouds passing through San Jose, but as the weather predictions had read: it got clearest right near totality, and overall was not a hindrance.

Last Minute Adaptation

When I first got to the site, I realized that the Rotunda was taller than I thought. I set up across the street in order to be able to have the moon over the Rotunda… but there were other problems, too. One of the problems is the floodlight on the top of the building. Another was a street light just to the right of where the red marker is in the graph below. These are problems that would only reveal themselves if you visit at night!

And then there are all of those flag posts.  My original guess at the Rotunda Height would have allowed me to stand between the fountain (brown area) and the building… but that clearly didn’t work as the rotunda was too high.  Setting up across the street (and very low) also had its challenges… namely buses and cars that came regularly.  I also realized that I had miscalculated the eclipse time by an hour (forgot it was now daylight savings time).  The miscalculation turned out to be a good thing as it left plenty of time to move around.  It would seem the ideal spot was in the MIDDLE of Santa Clara Street, but that wouldn’t have worked, of course.  Eventually I picked the spot with the red marker as a compromise between altitude of the moon above the structure, removing the glare from the tower lights, the wash-out of the street light, and the many flag poles in the way.

Planning Moonrise

If only my CamRanger had cooperated, I’d have had a continuous sequence of shots of the moon passing over the Rotunda.  There is always October… and maybe Plan A will work for that!

Of course that’s not ALL that was required to get the shot. I also had to composite each of the moon shots into their proper locations. I did that by first taking a panorama of the area, then making sure that when the exposures began I had a piece of the rotunda in each shot so I could properly align the moon over its actual location.  The creation of the image used the Easy HDR method we have previously described.